mate
 
Historia Personajes Juegos Para que sirven? Importancia Home La Secundaria
 
La Historia
 

3000 A.C.- 2500 A.C.

 Los textos de matemática más antiguos que se poseen proceden de Mesopotamia, algunos textos cuneiformes tienen más de 5000 años de edad.
Se inventa en China el ábaco, primer instrumento mecánico para calcular.
Se inventan las tablas de multiplicar y se desarrolla el cálculo de áreas.

1600 A.C
 aprox.

 El Papiro de Rhind, es el principal texto matemático egipcio, fué escrito por un escriba bajo el reinado del rey hicso Ekenenre Apopi  y contiene lo esencial del saber matemático de los egipcios. Entre estos, proporciona unas reglas para cálculos de adiciones y sustracciones de fracciones, ecuaciones simples de primer grado, diversos problemas de aritmética, mediciones de superficies y volumenes.

entre 600 y 300 A.C.

 La matemática griega es conocida gracias a un prólogo histórico escrito en el siglo V D.C. por el filósofo Proclo. Este texto nombra a los geómetras griegos de aquel período, pero sin precisar la naturaleza exacta de sus descubrimientos.

Del 550 al 450 A.C.

Se establece la era pitagórica. Pitágoras de Samos, personaje semilegendario creador de un gran movimiento metafísico, moral, religioso y científico. El saber geométrico de los pitagóricos estaba en la geometría elemental, donde destaca el famoso Teorema de Pitágoras, el cual fue establecido por su escuela y donde la tradición de los pitagóricos llevó a atribuirselo a su maestro. Con respecto a la aritmética el saber de los pitagóricos era enorme. Fueron los primeros en analizar la noción de número y en establecer las relaciones de correspondencia entre la aritmética y la geometría. Definieron los número primos, algunas progresiones y precisaron la teoría de las proporciones. Los pitagóricos propagaban de que todo podía expresarse por medio de números, pero luego tuvieron que aceptar que la diagonal de un cuadrado era inconmesurable con el lado del cuadrado.

Hacia el 460 A.C

El mercader Hipócrates de Quíos, se convirtió en el primero en redactar unos Elementos, es decir, un tratado sistemático de matemáticas.

alrededor de 406 a 315 A.C.

El astrónomo Eudoxo, establece una Teoría de la Semejanza.

276-194 A.C.

El matemático griego Eratóstenes ideó un método con el cual pudo medir la longitud de la circunferencia de la tierra.

300-600

Los hindúes conocen el sistema de numeración babilónica por posición y lo adaptan a la numeración decimal, creando así el sistema decimal de posición, que es nuestro sistema actual.

1100

Omar Khayyam desarrolla un método para dibujar un segmento cuya longitud fuera una raíz real positiva de un polinomio cúbico dado.

1525

El matemático alemán Christoff Rudolff emplea el símbolo actual de la raíz cuadrada

1545

Gerolamo Cardano publica el método general para resolver ecuaciones de tercer grado

1550

Ferrari da a conocer el método general de resolución de una ecuación de cuarto grado

1591

Francois Viète escribió In artem analyticem isagoge en el cual se aplicaba por primera vez el álgebra a la geometría.

1614

Napier inventa los logaritmos.

1617

John Napier inventa un juego de tablas de multiplicación, llamada "los huesos de Napier". Posteriormente publicó la primera tabla de logaritmos.

1619

Descartes crea la Geometría Analítica.

1642

El matemático Blaise Pascal construye la primera máquina de calcular, conocida como la Pascalina, la cual podía efectuar sumas y restas de hasta 6 cifras.

1684

Se crea, casi simultáneamente, el Cálculo Infinitesimal por Newton y Leibniz.

1743

Langlois inventa el pantógrafo.

1746

D'Alembert enuncia y demuestra parcialmente que "cualquier polinomio de grado n, tiene n raíces reales o complejas". 

1761

Johann Lambert prueba que el número p es irracional.

1777

Leonard Euler   matemático suizo, simboliza la raíz cuadrada de -1 con la letra i (de imaginario).

1798

El matemático italiano Paolo Ruffini  enuncia y parcialmente demuestra  la imposibilidad de resolver ecuaciones de 5º grado.

1812

Laplace publicó en París su Théorie analytique des probabilités donde hace un desarrollo riguroso de la teoría de la probabilidad con aplicaciones a problemas demográficos, jurídicos y explicando diversos hechos astronómicos.

1817

Bernhard Bolzano presenta un trabajo titulado "Una prueba puramente analítica del teorema que establece que entre dos valores donde se garantice un resultado opuesto, hay una raíz real de la ecuación". Dicha prueba analítica se conoce hoy como teorema de Bolzano

1822

Poncelet descubre lo que él llamó "Propiedades Proyectivas de las Figuras"

1831

G.W.Leibniz  pone de manifiesto el valor del concepto de grupo, abriendo la puerta a las más importantes ideas matemáticas del mundo contemporáneo.

1872-1895

Es creada la Teoría de Conjuntos por el matemático ruso Georg Cantor.

1904

El matemático sueco Niels F. Helge von Koch  construye la curva que lleva su nombre.

1924

Se instauran las medallas fields con el fin de premiar a matemáticos destacados.

1975

Mitchell Feingenbaum descubre un modelo matemático que describe la transición del orden al caos.

1977

Los matemáticos K. Appel y W. Haken resuelven el histórico teorema de los cuatro colores con ayuda de un computador.

Historia Resumida de las Matemáticas.
Las matemáticas son el estudio de las relaciones entre cantidades, magnitudes y propiedades, y de las operaciones lógicas utilizadas para deducir cantidades, magnitudes y propiedades desconocidas.
Las matemáticas son tan antiguas como la propia humanidad.
Las matemáticas avanzadas y organizadas fueron desarrolladas en el tercer milenio a.C., en Babilonia y Egipto, las cuales estaban dominadas por la aritmética, con cierto interés en medidas y cálculos geométricos.
Los primeros libros egipcios, muestran un sistema de numeración decimal con símbolos diferentes para las potencias de 10, similar a los números romanos. Los números se representaban escribiendo 1 tantas veces como unidades tenía la cifra dada, el 10, tantas veces como decenas tenía, y así sucesivamente. Para sumar, se sumaban en secciones diferentes las unidades, las decenas, las centenas... de cada número para obtener el resultado correcto. La multiplicación estaba basada en duplicaciones sucesivas y la división era el proceso inverso.
Los egipcios utilizaban sumas de fracciones unidad (ð), junto con la fracción, para expresar todas las fracciones. En geometría encontraron reglas para calcular el área de triángulos, rectángulos y trapecios, y el volumen de figuras como ortoedros, cilindros y, pirámides. Para calcular el área de un círculo, utilizaron un cuadrado de lado ð del diámetro del círculo, valor muy cercano al que se obtiene utilizando pi 3.1416.
Los babilonios tallaron tablillas con varias cuñas (cuneiforme); una cuña sencilla representaba al 1 y una en forma de flecha representaba al 10. Los números menores que 59 estaban formados por estos símbolos utilizando un proceso aditivo, como lo hacían los egipcios y los romanos. Pero el 60, era representado con el símbolo del 1, y a partir de ahí, el valor de un símbolo venía dado por su posición en la cifra completa. Esta manera de expresar números, fue ampliado a la representación de fracciones. Posteriormente este sistema fue denominado sexagesimal.
Tiempo más tarde, los babilonios desarrollaron matemáticas más sofisticadas, lo cual les permitió encontrar las raíces positivas de cualquier ecuación de segundo grado. También lograron encontrar las raíces de algunas ecuaciones de tercer grado, y resolvieron problemas más complicados utilizando el teorema de Pitágoras. Fueron capaces de recopilar gran cantidad de tablas, como las de multiplicar, de dividir, de cuadrados y hasta las de interés compuesto. Calcularon la suma de progresiones aritméticas y de algunas geométricas, pero también de sucesiones de cuadrados. Aunque también obtuvieron una buena aproximación de la raíz cuadrada.
Uno de los grupos más innovadores en la historia de las matemáticas fueron los egipcios, quienes inventaron las matemáticas abstractas basadas en definiciones, axiomas y demostraciones. Los descubridores egipcios más importantes fueron Tales de Mileto y Pitágoras de Samos, quien explicó la importancia del estudio de los números para poder entender el mundo.
Uno de los principales interesados en la geometría fue Demócrito, quien encontró la fórmula para calcular el volumen de una pirámide, aunque Hipócrates, descubrió que el área de figuras geométricas en forma de media luna limitadas por arcos circulares son iguales a las de ciertos triángulos, lo cual está relacionado con el problema de la cuadratura del círculo, que consiste en construir un cuadrado de área igual a un círculo. En ese tiempo también fue resuelto mediante diversos métodos y utilizando instrumentos diversos, entre los que se encuentran el compás en incluso la regla el problema de la trisección de un ángulo y la duplicación del cubo que consiste en construir un cubo cuyo volumen es el cuadrado de el de un cubo dado).
A finales del siglo V a.C., descubrieron que no existe una unidad de longitud capaz de medir el lado y la diagonal de un cuadrado, puesto que una de las dos cantidades es inconmensurable, es decir, no existen dos números naturales cuyo cociente sea igual a la proporción entre el lado y la diagonal. Pero como los griegos sólo utilizaban los números naturales, no pudieron expresar numéricamente dicho cociente, ya que es un número irracional. Por esta razón, fue abandonado la teoría Pitagórica de la proporción, basada en números, por lo que más tarde crearon una nueva teoría no numérica, la cual fue introducida por Eudoxo, quien descubrió un método para demostrar supuestos sobre áreas y volúmenes mediante aproximaciones sucesivas.
Euclides redactó trece libros que componen sus Elementos, los cuales contienen la mayor parte del conocimiento matemático existente en el siglo IV a.C., trataba temas como la geometría de polígonos, del círculo, la teoría de números, la teoría de los inconmensurables, la geometría del espacio y la teoría elemental de áreas y volúmenes.
Mucho tiempo después, Arquímedes utilizó un nuevo método teórico para calcular las áreas y volúmenes de figuras obtenidas a partir de las cónicas. Apolonio, redactó un tratado en ocho tomos sobre las cónicas, y estableció sus nombres: elipse, parábola e hipérbola. Este tratado sirvió de base para el estudio de la geometría de estas curvas.
Después, Herón expuso cómo elementos de la tradición aritmética y de medidas de los babilonios y egipcios convivieron con las construcciones lógicas de los grandes geómetras.
En el siglo II a.C., los griegos adoptaron el sistema babilónico de almacenamiento de fracciones y recopilaron tablas de las cuerdas de un círculo, puesto que para un círculo de radio determinado, estas tablas daban la longitud de las cuerdas en función del ángulo central correspondiente, que crecía con un determinado incremento. Eran similares a las tablas de seno y coseno, y marcaron el comienzo de la trigonometría.
Mientras tanto, se desarrollaron otros métodos para resolver problemas con triángulos planos y se introdujo el teorema de Menéalo, que utilizaron para calcular las longitudes de arcos de esfera en función de otros arcos, son este conocimiento, les fue posible resolver problemas de astronomía esférica.
Después de un siglo de expansión de la religión musulmana, los árabes incorporaron a su propia ciencia los resultados de “ciencias extranjeras”.
Hacia el año 900, los matemáticos árabes ampliaron el sistema indio de posiciones decimales en aritmética de números enteros, extendiéndolo a las fracciones decimales. Posteriormente, Jayyam generalizó los métodos indios de extracción de raíces cuadradas y cúbicas para calcular raíces cuartas, quintas y de grado superior. Pero el árabe Al-Jwârizmî (de su nombre procede la palabra algoritmo) desarrolló el álgebra de los polinomios; al-Karayi la completó para polinomios incluso con infinito número de términos. Ibrahim ibn Sinan, continuaron investigaciones sobre áreas y volúmenes. Los matemáticos Habas al-Hasib y Nasir ad-Din at-Tusi crearon trigonometrías plana y esférica utilizando la función seno de los indios y el teorema de Menelao.
Pero fue siglos después cuando algunos matemáticos árabes lograron importantes avances en la teoría de números, mientras otros crearon variedad de métodos numéricos para la resolución de ecuaciones.
 
Hasta el siglo XVI, descubrieron una fórmula para la resolución de las ecuaciones de tercer y cuarto grado, y fue publicado en 1545 por Cardano en su Ars magna. Esto llevó a los matemáticos a interesarse por números complejos y estimuló la búsqueda de soluciones similares para ecuaciones de quinto grado y superior.
En el siglo XVI se utilizaron los signos matemáticos y algebraicos.
Durante el siglo XVII se comenzó con el descubrimiento de logaritmos por Neper, lo que llevó a Laplace a decir, dos siglos más tarde, que Neper, al reducir el trabajo de los astrónomos a la mitad, les había duplicado la vida.
La ciencia de la teoría de números, es un buen ejemplo de los avances conseguidos en el siglo XVII basándose en los estudios de la antigüedad clásica. Su conjetura más destacada en este campo fue que no existen soluciones de la ecuación an + bn = cn con a, b y c enteros positivos si n es mayor que 2, lo que es famoso con el nombre de teorema de Fermat.
Tiempo después fue descubierto por Descartes, la geometría analítica, que mostraba cómo utilizar el álgebra para investigar la geometría de las curvas. Posteriormente, fue la publicación, por Desargues de su descubrimiento de la geometría proyectiva. Pero, a pesar de que este trabajo fue alabado por Descartes y Pascal, su terminología excéntrica y el gran entusiasmo que había causado la aparición de la geometría analítica retrasó el desarrollo de sus ideas hasta el siglo XIX, con los trabajos de Poncelet.
En el siglo XVII, apareció la teoría de la probabilidad a partir de la correspondencia entre Pascal y Fermat sobre el problema de puntos, esto llevó a Huygens a escribir un pequeño folleto sobre probabilidad en juegos con dados, que fue publicado por Bernoulli.
El acontecimiento matemático más importante del siglo XVII fue el descubrimiento por Newton de los cálculos diferencial e integral, para llegar a éstos, Newton se basó en los trabajos de John Wallis, Isaac Barrow, Descartes, Cavalieri, Hudde y Roberval. Pero ocho años más tarde, Leibniz descubrió también el cálculo pero el primero en publicarlo, en 1684 y 1686. El sistema de notación de Leibniz es el que se usa hoy en día en el cálculo.
A continuación, discípulos de Newton y Leibniz se basaron en sus trabajos para resolver problemas de física, astronomía e ingeniería, lo que les permitió crear nuevos campos dentro de las matemáticas. Así, los hermanos Bernoulli inventaron el cálculo de variaciones y Monge la geometría descriptiva. Lagrange, dio un tratamiento completa-mente analítico de la mecánica. Laplace escribió Teoría analítica de las probabilidades y el clásico Mecánica celeste, los cuales le valieron el sobrenombre de `el Newton francés'.
En el siglo XVIII, Euler aportó ideas sobre el cálculo y otras ramas de las matemáticas y sus aplicaciones. Escribió textos sobre cálculo, mecánica y álgebra. La teoría de Newton estaba basada en la cinemática y las velocidades, la de Leibniz en los infinitésimos, y el tratamiento de Lagrange era algebraico y basado en el concepto de las series infinitas.
En 1821, Cauchy, consiguió un enfoque lógico y apropiado del cálculo; basó su visión del cálculo en cantidades finitas y el concepto de límite. Pero, esta solución planteó elproblema de la definición lógica de número real. A pesar de que la definición de cálculo de Cauchy estaba basada en este concepto, Dedekind encontró una definición adecuada para los números reales, a partir de los números racionales.
A principios del siglo XIX, Gauss dio una explicación adecuada del concepto de número complejo; estos números formaron un nuevo y completo campo del análisis, desarrollado en los trabajos de Cauchy, Weierstrass y Riemann. Otro importante avance del estudio, por parte de Fourier, fue el de las sumas infinitas de expresiones con funciones trigonométricas, las que hoy en día se conocen como series de Fourier, y son herramientas muy útiles tanto en las matemáticas puras como en las aplicadas. Además, la investigación de funciones llevó a Cantor al estudio de los conjuntos infinitos y a una aritmética de números infinitos. La teoría de Cantor fue considerada como demasiado abstracta y criticada como “enfermedad de la que las matemáticas se curarán pronto”, forma hoy parte de los fundamentos de las matemáticas y recientemente ha encontrado una nueva aplicación en el estudio de corrientes turbulentas en fluidos.
Otro descubrimiento del siglo XIX que se consideró abstracto e inútil en su tiempo fue la geometría no euclídea, en la cual se pueden trazar al menos dos rectas paralelas a una recta dada que pasen por un punto que no pertenece a ésta. Aunque fue descubierta primero por Gauss, Lobachevski y Bolyai, lo publicaron primero porque Gauss tuvo miedo a la controversia que su publicación pudiera causar. Las geometrías no euclídeas fueron estudiadas por Riemann, con su descubrimiento de las múltiples paralelas.
Durante el siglo XIX, George Boole y Cantor dan su teoría de conjuntos. Pero, fue hasta finales del siglo cuando se descubrieron una serie de paradojas en la teoría de Cantor. Posteriormente, Russell encontró una paradojas, que afectó al concepto de conjunto.
Hilbert invento el ordenador o computadora digital programable, primordial en las matemáticas del futuro. Aunque los orígenes de las computadoras fueron las calculadoras de relojería de Pascal y Leibniz en el siglo XVII, fue Babbage quien, en la Inglaterra del siglo XIX, diseñó una máquina capaz de realizar operaciones matemáticas automáticamente siguiendo una lista de instrucciones escritas en tarjetas o cintas. La imaginación de Babbage sobrepasó la tecnología de su tiempo, construyendo el relé, la válvula de vacío y después la del transistor cuando la computación programable a gran escala se hizo realidad., lo cual ha dado un gran impulso a ciertas ramas de las matemáticas, como el análisis numérico y las matemáticas finitas, y ha generado nuevas áreas de investigación matemática como el estudio de los algoritmos. Se ha convertido en una poderosa herramienta en campos como la teoría de números, las ecuaciones diferenciales y el álgebra abstracta. Además, el ordenador ha permitido encontrar la solución a varios problemas matemáticos que no se habían podido resolver anteriormente, como el problema topológico de los cuatro colores propuesto a mediados del siglo XIX. El teorema dice que cuatro colores son suficientes para dibujar cualquier mapa, con la condición de que dos países limítrofes deben tener distintos colores.

Aunque la mayoría de los problemas más importantes han sido resueltos, otros como las hipótesis de Riemann siguen sin solución. Al mismo tiempo siguen apareciendo nuevos y estimulantes problemas. Parece que incluso las matemáticas más abstractas están encontrando aplicación

La Matemática es una de las ciencias más antiguas. Los conocimientos matemáticos fueron adquiridos por los hombres ya en las primeras etapas del desarrollo bajo la influencia, incluso de la más imperfecta actividad educativa. A medida que se iba complicando esta actividad, cambió y creció el conjunto de factores que influían en el desarrollo de las matemáticas, siendo este desarrollo observable a lo largo de toda su historia, la cual, está plagada de ejemplos que muestran cómo las matemáticas surgieron de la actividad productiva de los hombres.

En la historia de las matemáticas pueden distinguirse periodos aislados, diferenciados uno del otro por una serie de características y peculiaridades; periodicidad que, por otro lado, resulta imprescindible para realizar su estudio.
En esencia esta historia podría dividirse en cuatro grandes bloques según la periodicidad establecida por A.N. Kolmogorov:
a) Nacimiento de las matemáticas: Este periodo se prolonga hasta los siglos VI-V a.C. cuando las matemáticas se convierten en una ciencia independiente con objeto y metodología propios. También podría denominarse matemáticas antiguas o prehelénicas y en ella se suelen englobar las matemáticas de las antiguas civilizaciones de Egipto, Mesopotamia, China e India. Grecia estaría situada a caballo entre este periodo y el siguiente.
b) Periodo de las matemáticas elementales: A continuación del anterior, se prolonga desde los siglos VI-V a.C. hasta finales del siglo XVI. Durante este periodo se obtuvieron grandes logros en el estudio de las matemáticas constantes, comenzando a desarrollarse la geometría analítica y el análisis infinitesimal.
c) Periodo de formación de las matemáticas de magnitudes variables:El comienzo de es periodo está representado por la introducción de las magnitudes variables en la geometría analítica de Descartes y la creación del cálculo diferencial e integral en los trabajos de I. Newton y G.V. Leibniz. En el transcurso de este periodo se formaron casi todas las disciplinas conocidas actualmente, así como los fundamentos clásicos de las matemáticas contemporáneas. Este periodo se extendería aproximadamente hasta mediados del siglo XIX.

d) Periodo de las matemáticas contemporáneas: En proceso de creación desde mediados del siglo XIX. En este periodo el volumen de las formas espaciales y relaciones cuantitativas abarcadas por los métodos de las matemáticas han aumentado espectacularmente, e incluso podríamos decir exponencialmente desde la llegada del ordenador.